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ABSTRACT

Because quaternion representation is able to preserve the re-
lationship among RGB channels of a color image, we take
advantage of this characteristic and propose a new color im-
age denoising method, named the Quaternion Adaptive Non-
local Coupled Means (QANLCM). QANLCM first builds a
four-variable optimization model by decomposing the orig-
inal noisy image into a luminance component and a chro-
maticity component, and then alternatively updates the four
variables in each denoising iteration. Simulations and com-
parisons demonstrate that QANLCM shows a superiority to
other non-local means methods in removing Gaussian noise
from color images.

Index Terms— Color image denoising, non-local means,
quaternion adaptive non-local coupled means

1. INTRODUCTION

During image acquisition, transmission and storage, images
are often contaminated by noise. This will degrade the qual-
ity of images and seriously affects the subsequent image pro-
cessing. Since image denoising aims at removing noise and
keeping the details, it plays an important role in image pro-
cessing.

In 2005, Buades proposed non-local means (NLM) [1–3]
for image denoising. Unlike local and pixel-based denoising
methods, such as Wiener filter [4] and bilateral filter [5, 6],
which utilize a pixel as a unit and usually operate in a local
neighbourhood, NLM takes an image patch as a processing
unit and aims at obtaining the target image patch by calculat-
ing the weighted average of all the image patches in a given
search window.

Based on the framework of NLM, people advanced
various improvement methods, for example, non-local Eu-
clidean medians (NLEM) [7], improved NLEM (INLEM) [8],
non-local patch regression (NLPR) [9], probabilistic NLM
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(PNLM) [10] and NLM with local James-Stein type center
pixel weights (LJS-NLM) [11]. These NLM-based denoising
methods calculate the weight ωij only once and make it un-
changed in the later denoising processes. This is inappropri-
ate because the similarity between two image pixels/patches
will change after each denoising iteration. Considering this
issue, Lan and Zhou [12] proposed non-local fuzzy means
(NLFM) which takes the weight ωij as an optimization vari-
able and iteratively updates its value. By inheriting this
advantage of NLFM and replacing the Euclidean distance
with unbiased distance, unbiased distance based non-local
fuzzy means (UDNLFM) [13] was proposed recently. How-
ever, most of these existing NLM-based denoising methods
yield poor results in color image denoising, because they treat
each color channel as an independent component and ignore
the relationships among different color channels.

In this paper, we will propose a new color image denois-
ing method, named the Quaternion Adaptive Non-local Cou-
pled Means (QANLCM). Unlike many existing NLM-based
denoising methods, QANLCM can process all the color chan-
nels as a whole in RGB space. In QANLCM, we first utilize
quaternion unit transform to decompose the original image
into a luminance component and a chromaticity component,
and then build an optimization model with four variables.
QANLCM is more proper than the one only using color in-
tensity information in optimization model. Similar to NLFM,
the proposed method treats weight ωij and υij as optimization
variables and updates their values in each iteration. Related
experiments are implemented to show the excellent denoising
capability of our method.

2. BACKGROUND

2.1. Quaternion representation of color image

A quaternion number q is a hypercomplex number, which
consists of one real part and three imaginary parts [14]

q = A+Bi + Cj +Dk, (1)
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where A, B, C and D are real numbers, and i, j, k are com-
plex operators satisfying the following rules

i2 = j2 = k2 = ijk = −1,
ij = k, jk = i, ki = j,
ji = −k, kj = −i, ik = −j.

(2)

As can be seen, q is a pure quaternion when A = 0. In ad-
dition, the conjugate and the modulus of quaternion q are de-
fined as

q̄ = A−Bi− Cj−Dk, (3)

|q| =
√
qq̄ =

√
q̄q =

√
A2 +B2 + C2 +D2. (4)

In the RGB domain, a color image consists of three color
channels, i.e. the red, green and blue channels. We can use a
pure quaternion to represent a color pixel as q = ri + gj + bk,
where r,g,b represent the pixel values in the red, green, blue
channels, respectively. Thus, a three-dimensional color pixel
can be processed as a whole.

If given µ = (i + j + k)/
√

3, the related unit quaternion
U can be represented as T = |T |eµθ = cos θ + µ sin θ. Then
we can define the quaternion unit transform of a color pixel q
as follows [15]

TqT̄ = [cos θ + µ sin θ](ri + gj + bk)[cos θ − µ sin θ]

= qRGB + qL + q∆,
(5)

and

T̄ qT = qRGB + qL − q∆, (6)

where
qRGB =(ri + gj + bk) cos 2θ,

qL =
2√
3
µ(r + g + b) sin2 θ,

q∆ =
1√
3
[(b− g)i + (r − b)j + (g − r)k] sin 2θ.

(7)

qL and q∆ denote the luminance and chromaticity component
[16] of the color pixel q, respectively.

2.2. NLM

Supposed noisy image Y = X + N, where X denotes the cor-
responding clean image and N denotes Gaussian noise, NLM
obtains the denoised image X̂ by

X̂i =
∑
j∈Si

ωijYj , (8)

where

ωij =
1

W
· exp(−

||Yi − Yj ||2

h2
), (9)

W =
∑
j∈Si

exp(−
||Yi − Yj ||2

h2
). (10)

X̂i is the denoised image patch centered at pixel i. Yi and Yj
are the noisy image patches centered at pixels i and j. ωij de-
notes the weight between patches Yi and Yj . Si is the search
window with center pixel i and radius s. In addition, the cen-
ter pixel i is not included in Si. W is the normalization factor
that makes

∑
j∈Si

ωij = 1. h denotes the smoothing parameter.

3. QANLCM

This section will first review NLFM, then introduce our new
denoising method, namely Quaternion Adaptive Non-local
Coupled Means (QANLCM), and finally analyze the similar-
ities and differences between NLFM and QANLCM.

3.1. NLFM

Due to the fact that many NLM-based methods compute
weight ωij once and then keep it fixed in the subsequent de-
noising iterations, NLFM was proposed to treat the weight
ωij as an optimization variable and update its value itera-
tively. The optimization model of NLFM [12] is given as

{X̂i, ωij}= arg min
Xi,ωij

∑
j∈Si

ωij ||Xi−Yj ||2+h
∑
j∈Si

ωij logωij (11)

where ωij ≥ 0 and
∑
j∈Si

ωij = 1. We first have the initial

settings of X̂
(0)

= Y and t = 0, and then alternately update
ωij and X̂i by the following equations

ω
(t+1)
ij =

1

W
· exp

(
−||X̂

(t)

i − Yj ||2

h

)
, (12)

X̂
(t+1)

i =
∑
j∈Si

ω
(t+1)
ij Yj . (13)

where t = 0, 1, 2, · · · . After (t+ 1) iterations, we will obtain
weight ωij and the denoised image patch X̂i as ω(t+1)

ij and

X̂
(t+1)

i , respectively. W denotes the normalization factor.

3.2. QANLCM

In this subsection, we propose the Quaternion Adaptive Non-
local Coupled Means (QANLCM). Its optimization model is
defined as

{X̂Li ,X̂
∆
i ,ωij ,υij} =

argmin
XL
i ,X

∆
i ,ωij ,υij

‖XLi +X∆
i −YLi −Y∆

i ‖2

+t·
( ∑
j∈Si

ωij‖XLi −YLj ‖2+hL
∑
j∈Si

ωij logωij

)
+(1−t)·

( ∑
j∈Si

υij‖X∆
i −Y∆

j ‖2+h∆

∑
j∈Si

υij log υij

)
,

(14)

where ωij , υij ≥ 0,
∑
j∈Si

ωij = 1 and
∑
j∈Si

υij = 1. X̂
L

i ,

XLi , YLi ,YLj are the luminance components and X̂
∆

i ,X∆
i ,Y∆

i ,
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Y∆
j are the chromaticity components of image patches X̂i,

Xi,Yi,Yj , respectively. t ∈ (0, 1) is a trade-off parameter.

Based on Eqs. (5)-(7), we let θ = π/4 and then obtain X̂
L

i ,

X̂
∆

i as

X̂
L

i =
1

2
(T X̂iT̄ + T̄ X̂iT ), X̂

∆

i =
1

2
(T X̂iT̄ − T̄ X̂iT ). (15)

In the same way, we can calculate YLi ,YLj , Y∆
i and Y∆

j .
To solve the optimization problem of Eq. (14), we initial-

ize X̂
(0)

i = Yi and then update X̂
L

i , X̂
∆

i , ωij and υij as

ω
(t+1)
ij =

1

WL
· exp

−‖X̂L(t)

i − YLj ‖2

hL

 ·Hij , (16)

υ
(t+1)
ij =

1

W∆
· exp

−‖X̂∆(t)

i − Y∆
j ‖2

h∆

 ·Hij , (17)

X̂
L(t+1)

i =

YLi + Y∆
i − X̂

∆(t)

i + t ·
∑
j∈Si

ω
(t+1)
ij YLj

1 + t
, (18)

X̂
∆(t+1)

i =

YLi + Y∆
i − X̂

L(t+1)

i + (1− t) ·
∑
j∈Si

υ
(t+1)
ij Y∆

j

2− t
, (19)

where WL, W∆ are normalization factors and hL, h∆ are
smoothing parameters. The spatial kernelHij = exp

(
− (i−j)2

hs

)
and hs denotes the spatial parameter. When the termination is
satisfied, the denoising iteration will stop and we can obtain
the final denoised result as X̂i = T̄ (X̂

L

i + X̂
∆

i )T .

3.3. Comparison of QANLCM and NLFM

By comparing the optimization models and algorithm pro-
cesses of NLFM and QANLCM, their similarities lie in that
they are both NLM-based methods, and take weight ωij as an
optimization variable and iteratively change its value in each
denoising iteration. However, the differences between NLFM
and QANLCM are listed as follows:

1. NLFM was originally proposed for grayscale image.
When being applied to color image, NLFM treats the
three color channels as three independent parts. However,
QANLCM adopts quaternion representation to keep the
relationships among the three color channels.

2. NLFM utilizes the intensity difference to measure the sim-
ilarity between two image patches, while QANLCM con-
siders both the luminance and chromaticity aspects, and
then it is more appropriate to deal with a color image.

3. NLFM has two optimization variables (X̂i and ωij), while

QANLCM has four variables (X̂
L

i , X̂
∆

i , ωij and υij) to be
optimized.
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Fig. 1. Average values of (a) PSNR and (b) SSIM on the test
images.

4. EXPERIMENTS

In this section, we compare our QANLCM with several ex-
isting NLM-based methods. They are traditional NLM [1],
NLEM [7], INLEM [8], NLPR [9], LJS-NLM [11], PNLM
[10], NLFM [12] and UDNLFM [13]. These competing de-
noising methods are applied to denoise each color channel
independently in RGB space, and then merge three denoised
channels to acquire the denoised color image. The experi-
ments are conducted on forty test color images.

Fig. 1 displays the average PSNR and structural similar-
ity (SSIM) [17] values on all the test images. In Fig. 1(a),
QANLCM and UDNLFM stay above 22dB when noise level
σ = 100. However, in the same situation, other compet-
ing methods except PNLM fall below 21dB. When σ > 20,
QANLCM surpasses UDNLFM, PNLM and NLFM by about
0.8dB, 1.0dB and 1.8dB, respectively. According to average
SSIM shown in Fig. 1(b), QANLCM achieves more than 70%
even when noise level σ = 100. However, NLEM, INLEM,
NLPR and NLFM drop below 70% when σ ≥70. QANLCM,
UDNLFM and PNLM outperform NLFM in all situations.
QANLCM exceeds PNLM and UDNLFM by about 3% when
σ > 20. Table 1 shows the results on three test images
with noise level σ ranging from 10 to 100. As can be seen,
QANLCM outperforms other competing denoising methods
in terms of PSNR and SSIM.

Fig. 2 displays the denoised results of the lena image with
noise level σ = 20. Compared with the clean image in Fig.
2(a), we notice that NLEM, INLEM and NLPR cause blur
in their denoised images, especially in the area of the purple
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Table 1. PSNR and SSIM results of QANLCM and other methods at noise levels σ = 10, 20, · · · , 100.
PSNR(dB) SSIM(%)

Image Method\σ 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
QANLCM 33.36 29.63 27.91 26.53 25.60 24.64 23.81 23.25 22.59 22.05 94.58 90.12 87.10 83.36 78.90 75.15 70.59 67.18 63.64 60.17

UDNLFM [13] 32.28 28.57 26.66 25.25 24.16 23.24 22.50 21.98 21.51 21.06 92.89 88.29 84.17 79.85 74.64 70.56 66.36 62.48 58.87 55.76
NLFM [12] 31.57 27.39 25.44 24.00 22.98 22.21 21.64 21.17 20.69 20.27 92.48 85.83 78.86 71.54 64.11 58.71 53.46 49.20 44.99 42.06
PNLM [10] 31.75 27.84 26.14 24.90 23.84 22.94 22.23 21.69 21.18 20.69 92.77 88.19 84.26 80.11 75.41 71.49 67.74 64.29 61.11 57.40

airplane LJS-NLM [11] 32.21 28.20 26.01 24.41 23.27 22.30 21.56 20.97 20.48 20.03 92.71 87.46 82.11 76.59 71.03 66.43 61.55 57.72 54.00 50.32
NLPR [9] 30.93 26.23 23.87 22.69 22.10 21.63 21.28 21.00 20.60 20.30 91.39 83.74 75.87 69.36 63.37 59.16 54.77 51.04 46.86 44.38

INLEM [8] 31.35 27.00 24.91 23.45 22.58 21.91 21.40 20.96 20.47 20.04 92.03 84.42 76.33 68.29 60.87 55.62 50.53 46.49 42.38 39.56
NLEM [7] 31.22 26.59 23.99 22.78 22.17 21.69 21.33 21.02 20.63 20.31 91.71 84.05 75.96 69.51 63.43 59.11 54.66 50.83 46.75 44.11
NLM [1] 32.22 28.57 25.72 24.21 23.08 21.88 21.19 20.60 20.18 19.77 93.22 88.14 83.05 78.53 73.85 70.86 66.90 63.84 61.60 58.54

Noisy Image 28.15 22.11 18.60 16.09 14.14 12.57 11.23 10.08 9.05 8.16 71.55 50.04 38.22 30.20 24.41 20.05 16.69 14.05 11.92 10.19
QANLCM 32.05 28.25 26.40 25.07 24.20 23.38 22.65 22.24 21.78 21.43 96.27 91.57 87.89 84.20 80.79 77.54 74.24 72.08 69.67 67.19

UDNLFM [13] 30.96 26.95 24.97 23.65 22.81 22.16 21.61 21.23 20.89 20.57 94.79 89.29 84.34 80.01 76.54 73.45 70.56 68.68 66.55 64.48
NLFM [12] 30.64 26.34 24.31 23.03 22.20 21.63 21.11 20.72 20.33 19.95 95.01 88.84 82.57 77.64 73.63 69.90 66.29 63.78 60.56 57.65
PNLM [10] 30.71 26.37 24.72 23.54 22.66 22.01 21.42 21.02 20.61 20.32 95.16 89.61 84.67 80.28 76.64 73.43 70.83 68.77 66.78 64.68

headlight LJS-NLM [11] 31.27 26.98 24.76 23.33 22.37 21.65 21.03 20.60 20.19 19.87 95.38 89.65 84.28 79.81 76.11 72.65 69.51 67.24 64.77 62.36
NLPR [9] 30.16 24.69 22.76 21.92 21.46 21.16 20.83 20.57 20.28 20.00 94.00 83.94 77.58 74.44 71.71 69.17 66.41 64.54 61.87 59.48

INLEM [8] 30.53 25.93 23.78 22.62 21.92 21.42 20.94 20.55 20.14 19.75 94.76 87.37 80.66 76.08 72.24 68.54 64.77 62.11 58.64 55.56
NLEM [7] 30.31 24.73 22.80 22.00 21.54 21.23 20.88 20.61 20.32 20.02 94.06 83.66 77.62 74.58 71.88 69.25 66.48 64.52 61.84 59.36
NLM [1] 31.19 26.98 24.18 22.92 22.03 21.17 20.64 20.26 19.94 19.70 95.12 89.50 82.67 78.84 75.63 71.64 69.48 67.81 66.31 64.79

Noisy Image 28.12 22.12 18.59 16.08 14.16 12.57 11.21 10.08 9.04 8.12 87.50 67.98 51.97 40.39 31.90 25.52 20.61 17.31 14.43 12.28
QANLCM 33.14 29.92 28.36 27.22 26.35 25.43 24.60 23.95 23.50 22.91 99.04 98.11 97.54 96.62 95.80 94.81 93.87 92.93 92.04 91.13

UDNLFM [13] 32.65 29.35 27.53 26.15 25.17 24.32 23.61 23.07 22.55 22.18 98.86 97.71 96.56 95.34 94.38 93.35 92.36 91.61 90.67 89.97
NLFM [12] 31.80 28.23 26.35 25.02 24.11 23.31 22.63 22.09 21.55 21.06 98.68 97.24 95.81 94.47 93.31 92.15 90.98 89.82 88.44 87.25
PNLM [10] 32.18 28.83 27.20 25.81 24.82 23.84 23.02 22.40 21.90 21.45 98.75 97.52 96.44 95.24 94.19 93.09 92.05 91.16 90.33 89.56

lena LJS-NLM [11] 32.59 28.79 26.60 24.99 23.83 22.83 22.03 21.42 20.94 20.43 98.87 97.49 96.10 94.71 93.49 92.24 91.21 90.14 89.19 88.18
NLPR [9] 31.06 27.01 25.19 24.22 23.62 23.02 22.48 22.08 21.63 21.24 98.40 96.29 94.66 93.64 92.84 91.96 91.02 90.15 89.01 88.11

INLEM [8] 31.45 27.86 25.91 24.67 23.84 23.08 22.41 21.86 21.29 20.77 98.56 96.95 95.37 94.06 92.92 91.71 90.46 89.16 87.59 86.22
NLEM [7] 31.48 27.21 25.27 24.27 23.67 23.07 22.52 22.10 21.64 21.23 98.53 96.36 94.70 93.67 92.86 91.98 91.05 90.14 88.99 88.06
NLM [1] 31.92 28.38 25.98 24.39 23.19 22.29 21.52 20.95 20.52 20.07 98.73 97.35 95.64 94.31 93.10 91.80 90.89 89.97 89.22 88.47

Noisy Image 28.15 22.11 18.60 16.09 14.13 12.54 11.26 10.08 9.06 8.12 96.73 88.48 77.96 67.20 57.34 48.81 41.99 35.79 30.93 26.71

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Denoised results of the lena image with noise σ = 20:
(a) clean image; (b) noisy image; (c) NLEM; (d) INLEM; (e)
NLPR; (f) LJS-NLM; (g) PNLM; (h) NLFM; (i) UDNLFM;
(j) QANLCM.

feather on the hat. From the zoom-in part of these denoised
results, NLEM, INLEM, NLPR, LJS-NLM and NLFM lose
some details in the face, such as the corner of the mouth and
nostril. And for the result of PNLM in Fig. 2(g), there are still
some obvious noises shown on the philtrum. QANLCM and
UDNLFM achieve better performance than other methods in
maintaining the detail information and in reducing noise. Fig.
3 shows another group of denoised results of the headlight
image with noise σ = 70. As can be seen from the zoom-
in part, we can distinguish some structure information of the
white fence in the results of LJS-NLM, PNLM, UDNLFM
and QANLCM, while other methods lose most of the details
and result in over-smoothed images. Although LJS-NLM per-
forms well in detail preservation, it introduces many artifacts
in the denoised image. Compared with the competing denos-
ing methods, QANLCM retains more details and structure in-
formations, such as the windows of the houses and the texture
of rocks.

In summary, both quantitative analysis and visual compar-

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. Denoised results of the headlight image with noise
σ = 70: (a) clean image; (b) noisy image; (c) NLEM; (d)
INLEM; (e) NLPR; (f) LJS-NLM; (g) PNLM; (h) NLFM; (i)
UDNLFM; (j) QANLCM.

ison demonstrate that our QANLCM achieves better denois-
ing performance than other NLM-based denoising methods
over a wide range of noise levels.

5. CONCLUSION

Based on quaternion representation of the color image, we
proposed a new image denoising method, named the Quater-
nion Adaptive Non-local Coupled Means (QANLCM). It can
denoise three color channels as a whole. Different from those
methods which calculate image pixel/patch distance by di-
rectly using color intensity, QANLCM splits the original im-
age into a luminance component and a chromaticity com-
ponent, and then considers both components when measur-
ing color image pixel/patch similarity. Similar to NLFM,
QANLCM takes weight ωij and υij as optimization variables
and changes their values iteratively. Quantitative analysis and
visual results showed that QANLCM achieves excellent de-
noising performance in removing noise and retaining details.
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